If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+12-23x=0
a = 10; b = -23; c = +12;
Δ = b2-4ac
Δ = -232-4·10·12
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-7}{2*10}=\frac{16}{20} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+7}{2*10}=\frac{30}{20} =1+1/2 $
| 2w+2w=10 | | (1/8)*x=5 | | 54=10y-y | | 2(x-4)-8=20 | | 7-(2x-8)=3x+10 | | |2x+1|-3=6 | | 3y+(3-1y)=11 | | 36+6y=21 | | 10(1+x)^46=175 | | 3y(3-1y)=11 | | 3y(3+-1y)=11 | | -(4y-2)-(-3y+4)=8 | | 44=9/5c+32 | | 1/2*u=20 | | 4^12=16^x | | 2/3*u=24 | | 4^12=16x | | 1/2*y=24 | | 5u+15=50 | | 12-5=4x+37 | | 4z^2+12+9=0 | | (7v+35)=0 | | (v^2-9v+14)(7v+35)=0 | | −2x−6=3x-21 | | −36+4y=−12 | | V=3/4^2h12 | | (2/3)x+(5/6)x=(1/2)x+10 | | 9(x-6.5)=9.9 | | 8/x+1-3/2=2/3x+3 | | 180-7x-40+7x-40=180 | | 2(3x+12)=48 | | 14x-233=5x-8 |